Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374400

RESUMO

In this study, we report on the development and testing of hydrophobic coatings using cellulose fibers. The developed hydrophobic coating agent secured hydrophobic performance over 120°. In addition, a pencil hardness test, rapid chloride ion penetration test, and carbonation test were conducted, and it was confirmed that concrete durability could be improved. We believe that this study will promote the research and development of hydrophobic coatings in the future.

2.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676358

RESUMO

FRP (fiber-reinforced polymer)-reinforced concrete members have larger deflection than reinforced concrete members because of the low modulus of elasticity of the FRP bar. In this paper, we proposed a new effective moment of inertia equation to predict the deflection of FRP-reinforced concrete members based on the harmony search algorithm. The harmony search algorithm is used to optimize a function that minimizes the error between the deflection value of the experimental result and the deflection value expected from the specimen's specifications. In the experimental part, four GFRP (Glass Fiber-Reinforced Polymer)- and BFRP (Basalt Fiber-Reinforced Polymer)-reinforced concrete slab specimens were manufactured and tested. FRP-reinforced concrete slabs were reinforced with GFRP and BFRP rebars on spiral rib surfaces. The effects of the FRP reinforcement ratio and balanced reinforcement ratio (ρf/ρfb), the moment of inertia of the transformed cracked section and the gross moment of inertia (Icr/Ig), and the cracking moment and the maximum service load moment (Mcr/Ma) on the effective moment of inertia have been considered. The experimental results and predicted results of the flexural testing of concrete slabs reinforced with FRP rebars were compared, and the experimental results were in good agreement with the calculated values using the proposed effective moment of inertia equation.

3.
Materials (Basel) ; 14(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500948

RESUMO

In this study, multiple regression analysis (MRA) and polynomial regression analysis (PRA), which are traditional statistical methods, were applied to analyze factors affecting the tensile strength of basalt and glass fiber-reinforced polymers (FRPs) exposed to alkaline environments and predict the tensile strength degradation. The MRA and PRA are methods of estimating functions using statistical techniques, but there are disadvantages in the scalability of the model because they are limited by experimental results. Therefore, recently, highly scalable artificial neural networks (ANN) have been studied to analyze complex relationships. In this study, the prediction performance was evaluated in comparison to the MRA, PRA, and ANN. Tensile strength tests were conducted after exposure for 50, 100, and 200 days in alkaline environments at 20, 40, and 60 °C. The tensile strength was set as the dependent variable, with the temperature (TP), the exposure day (ED), and the diameter (D) as independent variables. The MRA and PRA results showed that the TP was the most influential factor in the tensile strength degradation of FRPs, followed by the exposure time (ED) and diameter (D). The ANN method provided the best correlation between predictions and experimental values, with the lowest error and error rate. The PRA method applied to the response surface method outperformed the MRA method, which is most commonly used. These results demonstrate that ANN can be the most efficient model for predicting the durability of FRPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...